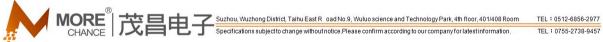


STD

PRODUCTS:	SHIELDED SMD Power Inductor				
PART NO:	MCSHC Series				
CUST P/ NO:					
DATE:	2025.04.16				
SALES DEP:					
E-MAIL:					
VERSION:	REV.A				
CHANGE PROJECT :	-				
BEFORE :	-				
AFTER:	-				
CHANGE DATE:	-				
CUSTOMER SIGNATURE :	-				
-					

CUSTOMER:

APPROVAL BY :	CHECK BY :	DRAWN BY :
Honey Wei	Leo Wang	May Gao



Ver	Revision Items	Before Revision	After Revision	Date
Rev.A	-	-	-	2025.04.16

- · SHIELDED SMD POWER INDUCTOR
- · High Current up to 95 A
- · Low DCR down to 0.18mOhms
- · Environmental Lead free
- · Environmental RoHS2.0 compliant
- · Environmental halogen free
- Storage Temperature : -40 $^{\circ}$ C ~ +85 $^{\circ}$ C
- Packaging 13"Reel ,Plastic tape: 12.0~24.0mm wide

FEATURES

- · Ferrite based with lower core loss
- · Frerrite High Bs material.
- · Accurate&low DCR design
- · Ultra high current capacity.

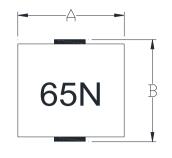
Applications

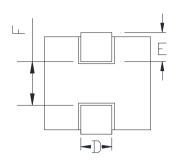
- · Multi-phase and Vcore regulators.
- · Server and desktop VRMs and EVRDs.
- · Data networking and storage systems.
- · Graphics cards and battery power systems.
- · Buck Converter, VRMs.

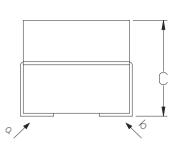
PRODUCT IDENTIFICATION

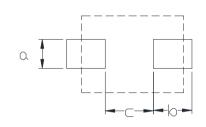
<u>MC</u>	<u>SHC</u>	<u>444</u>	<u>Z</u>	<u>R10</u>	<u>M</u>	<u>R32</u>
1	2	3	(4)	(5)	(6)	(7)

- ① Brand & Product classification
- 2 Product Series NO.(SHC: SMD Power Inductors.)
- ③ External Dimensions.(444 : L:4.0 × W:4.0 × H:4.0) [mm]
- (4) Separator code.
- **(5)** Nominal Inductance


Example	Nominal Value
R22	0.22uH
1R0	1.0uH
100	10uH
101	100uH
70NH	70nH


- (6) Inductance Tolerance.(L: ±15%; M: ±20%; N: ±30%)
- \bigcirc Nominal DC Resistance.(R32 : 0.32m Ω)





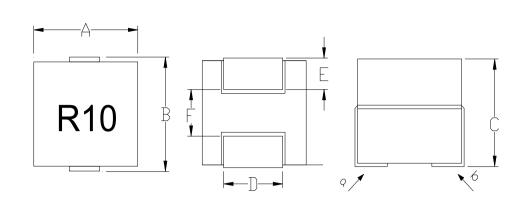
Code	Dimensions
Α	4.0 Max
В	4.2 Max
С	4.0 Max
D	1.4 Typ
Е	1.3 Typ
F	4.8±0.3

The 22NH C dim is 4.2Max

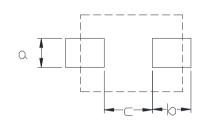
Recommend Land Pattern Dimensions

Code	Dimensions
а	1.9 Ref
b	1.7 Ref
С	0.9 Ref

Electrical Characteristics


Part Number	Inductance ¹ (nH)	DCR^2 (m Ω)	I-sat ^{3.1} (Amps)Max	l-sat ^{3.2} (Amps)Max	l-sat ^{3.3} (Amps)Max	I-rms⁴ (Amps)Typs
MCSHC444Z22NHMR32	22±20%	0.32±10%	40.0	34.0	32	19.0
MCSHC444Z65NHMR32	65±20%	0.32±10%	26.0	22.0	20	19.0
MCSHC444ZR10MR32	100±20%	0.32±10%	17.0	13.0	9.5	19.0

- 2.The nominal DCR is measured at 20° ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25°C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 100° C
- 3.3The I-sat that will cause initial inductance value approximately 20% rolloff at 125 $^{\circ}$ C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.



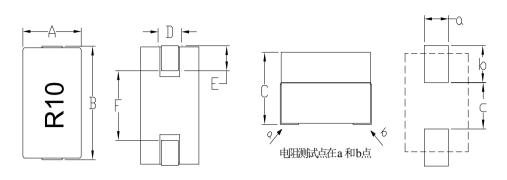
Code	Dimensions
Α	7.0 Max
В	7.0 Max
С	5.0 Max
D	2.5±0.3
Ε	1.52±0.3
F	6.05±0.5

Recommend Land Pattern Dimensions

(Unit: mm)

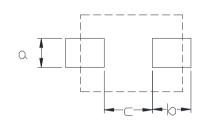
Code	Dimensions			
а	2.8 Ref			
b	1.8 Ref			
С	5.75 Ref			

Floctrical Characteristics


lectrical Character	ISTICS					
Part Number	Inductance ¹ (nH)	DCR² (mΩ)	I-sat ^{3.1} (Amps)Max	I-sat ^{3.2} (Amps)Max	I-rms⁴ (Amps)Typs	
MCSHC75ZR15LR32	150±15%	0.32±10%	30.0	24.0	24.0	

- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25°C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 100° C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.

(Unit: mm)



Code	Dimensions
Α	6.4 Max
В	9.6 Max
С	8.0 Max
D	2.14±0.2
Е	2.3±0.3
F	4.6±0.3
	·

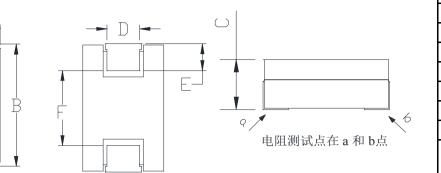
Fig. 26

Recommend Land Pattern Dimensions

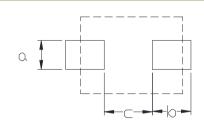
(Unit: mm)

Code	Diffierisions
а	2.54 Ref
b	3.2 Ref
С	4.0 Ref

Electrical Characteristics


Part Number	Inductance ¹	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms⁴	
Part Number	(nH)	$(m\Omega)$	(Amps)Max	(Amps)Max	(Amps)Typs	
MCSHC09608ZR10LR29	100±15%	0.29±10%	94.0	81.0	51	
MCSHC09608ZR12LR29	120±15%	0.29±10%	79.0	68.0	51	
MCSHC09608ZR15LR29	150±15%	0.29±10%	65.0	54.0	51	
MCSHC09608ZR22LR29	220±15%	0.29±10%	44.0	37.0	51	
MCSHC09608ZR28LR29	280±15%	0.29±10%	34.0	29.0	51	
MCSHC09608ZR30LR29	300±15%	0.29±10%	32.0	27.0	51	

- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25°C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 125 $^{\circ}$ C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.


(Unit: mm)

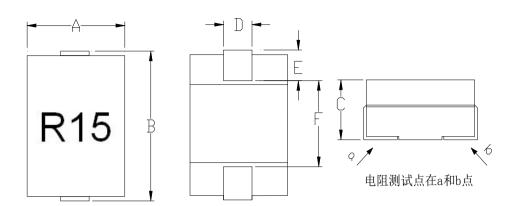
Code	Dimensions
Α	6.8±0.3
В	9.3±0.3
С	5.3±0.2
D	2.3±0.15
Е	2.3±0.3
F	4.8±0.3

Recommend Land Pattern Dimensions

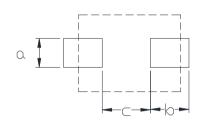
(Unit: mm)

Code	Dimensions
а	2.6 Ref
b	2.6 Ref
С	4.5 Ref

Electrical Characteristics


Part Number	Inductance ¹ (nH)	DCR² (mΩ)	I-sat ^{3.1} (Amps)Max	l-sat ^{3.2} (Amps)Max	I-sat ^{3.3} (Amps)Max	I-rms⁴ (Amps)Typs
MCSHC09755Z70NHMR14	70±20%	0.14±10%	100.0	85.0	75	65.0

- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25°C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 100° C
- 3.3The I-sat that will cause initial inductance value approximately 20% rolloff at 125 $^{\circ}$ C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.



Code	Dimensions
Α	6.8±0.2
В	10.0±0.3
С	5.0 Max
D	2.54±0.2
Е	2.03±0.3
F	5.94±0.3
_	

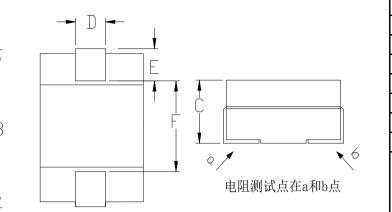
Recommend Land Pattern Dimensions

(Unit: mm)

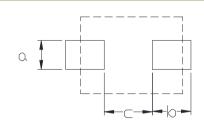
Code	Dimensions
а	2.85 Ref
b	2.3 Ref
С	5.6 Ref

Electrical Characteristics

Part Number	Inductance ¹ (nH)	DCR² (mΩ)	I-sat ^{3.1} (Amps)Max	l-sat ^{3.2} (Amps)Max	I-sat ^{3.3} (Amps)Max	I-rms⁴ (Amps)Typs
MCSHC10705R15LR23	150±15%	0.23±10%	53,≧115nH	45,≧115nH	45,≧95nH	37.0


- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1The I-sat that will cause rolloff nominal inductance value at 25°C
- 3.3The I-sat that will cause rolloff nominal inductance value at 125 $^{\circ}$ C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.

R20


(Unit: mm)

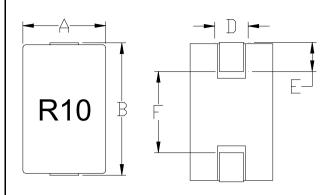
Code	Dimensions
Α	6.8±0.2
В	10.0±0.3
С	5.0 Max
D	2.54±0.2
Е	2.03±0.3
F	5.94±0.3

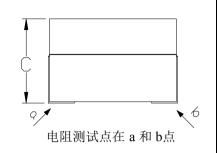
Recommend Land Pattern Dimensions

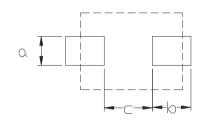
(Unit: mm)

Code	Dimensions
а	2.8 Ref
b	2.4 Ref
С	5.60 Ref

Electrical Characteristics


Part Number	Inductance ¹ (nH)	DCR^2 (m Ω)	I-sat ³ (Amps)Max	I-rms⁴ (Amps)Typs	
MCSHC10705R20LR29		0.29±10%	43,≧140nH	41.0	


- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3. The I-sat that will cause rolloff nominal inductance value at 25° C
- 4.The I-rms that will cause temperature rise approximate 40°C without core loss.



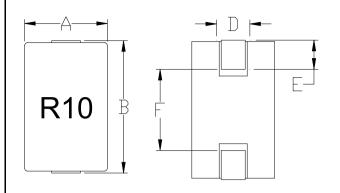
Code	Dimensions
Α	8.0 Max
В	10.6 Max
С	7.0 Max
D	2.1±0.2
Е	2.2±0.3
F	5.7±0.5

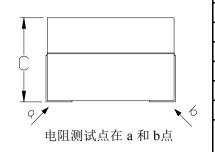
Recommend Land Pattern Dimensions

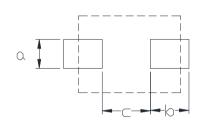
(Unit: mm)

Code	Dimensions
а	2.6 Ref
b	3.0 Ref
С	5.0 Ref

Electrical Characteristics


Part Number	Inductance ¹	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms⁴	
	(nH)	$(m\Omega)$	(Amps)Max	(Amps)Max	(Amps)Typs	
MCSHC10807ZR12LR29	120±15%	0.29±10%	94.0	86.0	61.0	
MCSHC10807ZR15LR29	150±15%	0.29±10%	75.0	60.0	61.0	
MCSHC10807ZR18LR29	180±15%	0.29±10%	60.0	50.0	61.0	
MCSHC10807ZR22LR29	220±15%	0.29±10%	50.00	40.0	61.0	
MCSHC10807ZR27LR29	270±15%	0.29±10%	41.00	33.0	61.0	
MCSHC10807ZR30LR29	300±15%	0.29±10%	35.00	30.0	61.0	
MCSHC10807ZR33LR29	330±15%	0.29±10%	33.00	26.0	61.0	
MCSHC10807ZR39LR29	390±15%	0.29±10%	28.00	22.0	61.0	
MCSHC10807ZR47LR29	470±15%	0.29±10%	23.00	19.0	61.0	


- 1.Inductance is measured at 100 KHz and 1.0 Vrms at 25°C
- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1 The I-sat that will cause initial inductance value approximately 20% rolloff at 25℃
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.



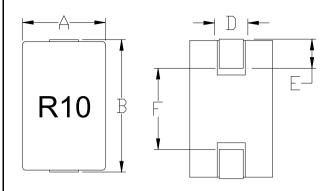
Code	Dimensions
Α	8.0 Max
В	10.4 Max
С	7.5 Max
D	2.25±0.2
E	2.54±0.3
F	5.1±0.5

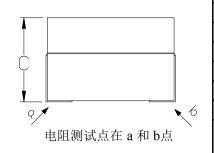
Recommend Land Pattern Dimensions

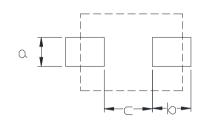
(Unit: mm)

Code	Dimensions
а	2.6 Ref
b	2.8 Ref
С	4.7 Ref
_	

Electrical Characteristics


Part Number	Inductance ¹	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms⁴	
Part Number	(nH)	$(m\Omega)$	(Amps)Max	(Amps)Max	(Amps)Typs	
MCSHC10875ZR12LR29	120±15%	0.29±10%	94.0	86.0	61.0	
MCSHC10875ZR15LR29	150±15%	0.29±10%	76.0	70.0	61.0	
MCSHC10875ZR17LR29	170±15%	0.29±10%	66.0	60.0	61.0	
MCSHC10875ZR22LR29	220±15%	0.29±10%	50.0	43.0	61.0	
MCSHC10875ZR23LR29	230±15%	0.29±10%	48.0	40.0	61.0	
MCSHC10875ZR27LR29	270±15%	0.29±10%	40.0	34.0	61.0	
MCSHC10875ZR30LR29	300±15%	0.29±10%	35.0	30.0	61.0	


- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1 The I-sat that will cause initial inductance value approximately 20% rolloff at 25°C
- 3.2 The I-sat that will cause initial inductance value approximately 20% rolloff at 100° C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.
- 5.*MCSHC10875ZR15LR29印字与常规系列不同。



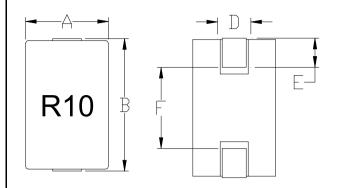
Code	Dimensions
Α	8.0 Max
В	10.4 Max
С	8.0 Max
D	2.1±0.2
Е	2.54±0.3
F	4.7±0.5

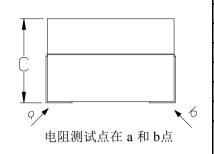
Recommend Land Pattern Dimensions

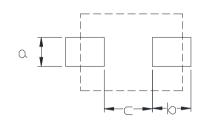
(Unit: mm)

Code	Dimensions
а	2.54 Ref
b	3.65 Ref
С	4.06 Ref
_	

Flactrical Characteristics


Electrical Characteri	Electrical Characteristics					
Part Number	Inductance ¹ (nH)	DCR² (mΩ)	I-sat ^{3.1} (Amps)Max	I-sat ^{3.2} (Amps)Max	l-sat ^{3.3} (Amps)Max	I-rms ⁴ (Amps)Typs
MCSHC10808ZR12LR18	` '	0.18±10%	95.0	84.0	77.0	68.0
MCSHC10808ZR15LR18	150±15%	0.18±10%	79.0	70.0	66.0	68.0
MCSHC10808ZR18LR18	180±15%	0.18±10%	62.0	56.0	52.0	68.0
MCSHC10808ZR22LR18	220±15%	0.18±10%	58.0	51.0	47.0	68.0


- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1 The I-sat that will cause initial inductance value approximately 20% rolloff at 25°C
- 3.2 The I-sat that will cause initial inductance value approximately 20% rolloff at 100° C
- 3.3 The I-sat that will cause initial inductance value approximately 20% rolloff at 125 $^{\circ}$ C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.



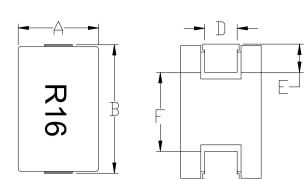
Code	Dimensions
Α	7.2 Max
В	11.2 Max
С	7.5 Max
D	1.9±0.2
E	2.5±0.3
F	5.8±0.5

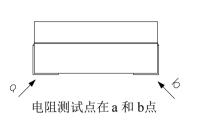
Recommend Land Pattern Dimensions

(Unit: mm)

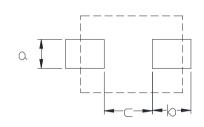
Code	Dimensions
а	2.1 Ref
b	3.1 Ref
С	5.0 Ref
_	

Electrical Characteristics


Licetrical Orial action stics						
Part Number	Inductance ^{1.1}	Inductance ^{1.2}	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms⁴
rait Nullibei	(nH)	(nH)	(mΩ)	(Amps)Max	(Amps)Max	(Amps)Typs
MCSHC11775ZR12LR29	120±15%	86 min	0.29±10%	90.0	72.0	55.0
MCSHC11775ZR15LR29	150±15%	108 min	0.29±10%	70.0	56.0	55.0
MCSHC11775ZR23LR29	230±15%	166 min	0.29±10%	45.0	36.0	55.0
MCSHC11775ZR30LR29	300±15%	217 min	0.29±10%	35.0	28.0	55.0
MCSHC11775ZR40LR29	400±15%	288 min	0.29±10%	25.0	20.0	55.0
MCSHC11775ZR51LR29	510±15%	364 min	0.29±10%	18.0	14.5	55.0


- 1.2 The Inductance is measured at I-sat^{3.1} and 100 KHz and 0.1 Vrms at 25°C
- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1 The I-sat that will cause initial inductance value approximately 20% rolloff at 25°
- 3.2 The I-sat that will cause initial inductance value approximately 20% rolloff at 100° C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.

(Unit: mm)



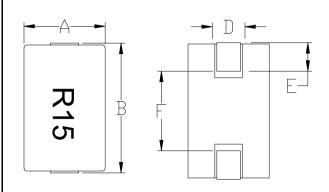
Code	Dimensions
Α	6.8±0.2
В	10.5±0.3
С	5.0 Max
D	2.54±0.2
Е	2.3±0.3
F	5.94±0.3

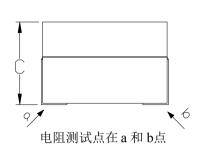
Recommend Land Pattern Dimensions

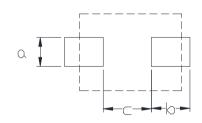
(Unit: mm)

Code	Dimensions
а	2.8 Ref
b	2.6 Ref
С	5.6 Ref

Electrical Characteristics


Part Number	Inductance ¹ (nH)	DCR ² (mΩ)	I-sat ^{3.1} (Amps)Max	I-sat ^{3.2} (Amps)Max	I-rms⁴ (Amps)Typs	
MCSHC10705R16LHR23		0.23±10%	60,≧70nH	60,≧70nH	40.0	


- 1.2 The Inductance is measured at I-sat^{3.1} and 100 KHz and 0.1 Vrms at 25°C
- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1 The I-sat that will cause initial inductance value approximately 20% rolloff at 25°
- 3.2 The I-sat that will cause initial inductance value approximately 20% rolloff at 100° C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.



Code	Dimensions
Α	7.0 Max
В	10.5±0.3
С	2.9 Max
D	2.3±0.2
Е	3.1±0.3
F	4.3±0.5

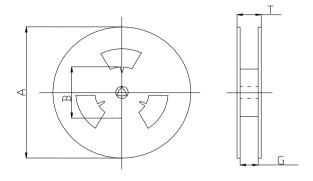
Recommend Land Pattern Dimensions

(Unit: mm)

Code	Dimensions
а	2.6 Ref
b	3.4 Ref
С	4.0 Ref

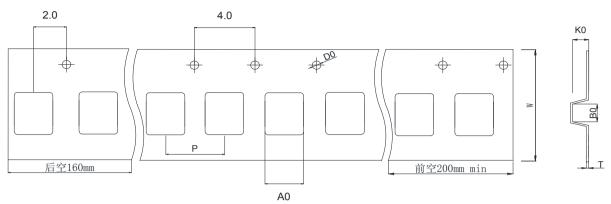
Electrical Characteristics

Part Number	Inductance ¹ (nH)	DCR² (mΩ)	I-sat ^{3.1} (Amps)Max	I-sat ^{3.2} (Amps)Max	I-rms⁴ (Amps)Typs	
MCSHC10703R15LHR40		0.4±10%	60,≧80nH	60,≧80nH	40.0	


- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1The I-sat that will cause rolloff nominal inductance value at 25°C
- 3.2The I-sat that will cause rolloff nominal inductance value at 125°C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.

Packaging

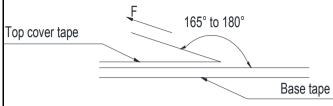
Reel Dimension:



P/N	Туре	A(mm)	B(mm)	G(mm)	T(mm)	Chip/Reel
MCSHC444	13" x 12mm	330	100	12.5	16.7	2,000
MCSHC75	13" x 16mm	330	100	16.5	20.7	1,000
MCSHC09608	13" x 24mm	330	100	24.5	28.7	700
MCSHC09755	13" x 24mm	330	100	24.5	28.7	800
MCSHC10705(R23)	13" x 24mm	330	100	24.5	28.7	1,000
MCSHC10705(R29)	13" x 24mm	330	100	24.5	28.7	1,000
MCSHC10807(R29)	13" x 24mm	330	100	24.5	28.7	500
MCSHC10875(R29)	13" x 24mm	330	100	24.5	28.7	700
MCSHC10808(R18)	13" x 24mm	330	100	24.5	28.7	500
MCSHC11775(R29)	13" x 24mm	330	100	24.5	28.7	500
MCSHC10705H(R23)	13" x 24mm	330	100	24.5	28.7	800
MCSHC10703H(R40)	13" x 24mm	330	100	24.5	28.7	1,200

Packaging

Tape Dimension:



P/N	Ao	Во	Ko	Р	W			
MCSHC75	4.2±0.1	4.4±0.1	4.2±0.1	8.0±0.1	12.0±0.3			
MCSHC09608	7.3±0.1	7.3±0.1	5.2±0.1	12.0±0.1	24±0.3			
MCSHC09755	6.7±0.1	10.3±0.1	8.2±0.1	12.0±0.1	24±0.3			
MCSHC10705(R23)	7.2±0.1	9.8±0.1	5.7±0.1	12.0±0.1	24±0.3			
MCSHC10705(R29)	7.2±0.1	9.4±0.1	5.3±0.1	12.0±0.1	24±0.3			
MCSHC10807(R29)	7.5±0.1	10.4±0.1	5.1±0.1	16.0±0.1	24±0.3			
MCSHC10875(R29)	8.2±0.1	10.7±0.1	7.6±0.1	12.0±0.1	24±0.3			
MCSHC10808(R18)	8.2±0.1	10.6±0.1	7.6±0.1	16.0±0.1	24±0.3			
MCSHC11775(R29)	8.4±0.1	10.5±0.1	8.2±0.1	16.0±0.1	24±0.3			
MCSHC10705H(R23)	7.4±0.1	11.4±0.1	7.5±0.1	16.0±0.1	24±0.3			
MCSHC10703H(R40)	7.2±0.1	11±0.1	5.2±0.1	12.0±0.1	24±0.3			

Packaging

Tearing Off Force:

	The force tearing off cobe tape is 10 to 130 g.f						
	in the arrow direction under the following conditions						
	Room Temp Room Humidity Room atrn Teaming Speed (°C) (%) (hPa) (mm/min)						
1	5~35	45~85	860~1060	300			

XStorage Conditions

- 1. Temperature and humidity conditions: -40°C ~ +85°C and 70% RH.
- 2. Recommended products should be used within 6 months form the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

XTransportation

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.

Recommended Soldering Conditions

Figure 1. Re-flow Soldering

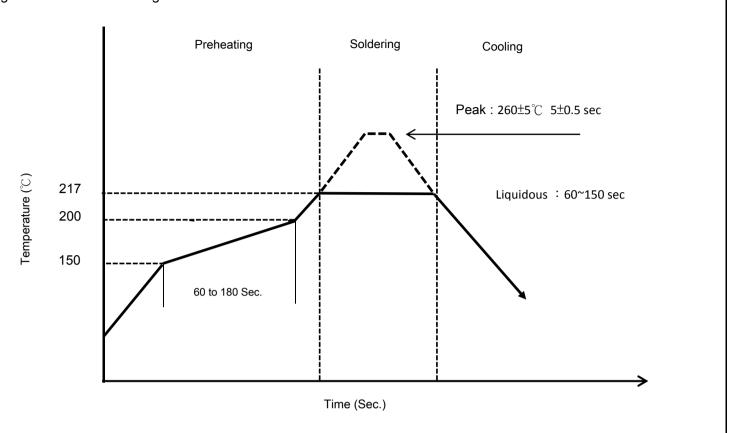
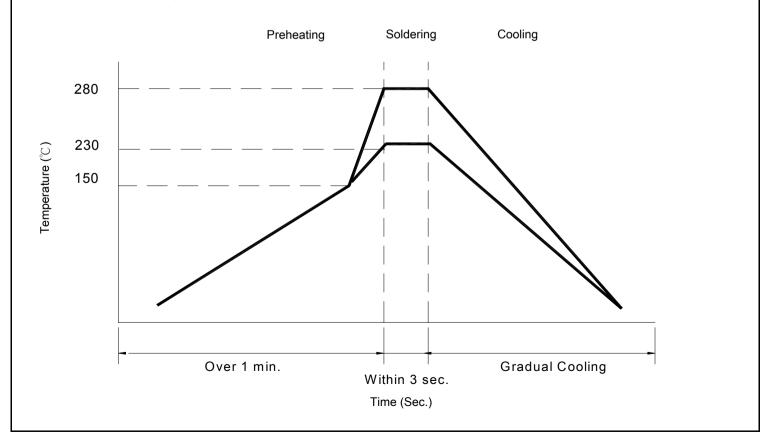



Figure 2. Hand Soldering

Item	Specification	Conditions
Operating temperature	-40°C ~ +125°C (Including self-tempera	
range	-40 C 1120 C (Including Self-tempera	uie rise)
Storage temperature and humidity range	-40°C ∼ +85°C , 70% RH Max	
Solderability	More than 90% of the terminal electrode should be covered with solder.	- Preheat: 150 °C, 60 sec - Solder: Sn96.5%-Ag3%-Cu0.5% - Temperature: 245±5°C - Flux for lead free: Rosin 9.5% - Dip time: 4±1 sec - Depth: completely cover the termination
Resistance to Soldering Heat	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	- Solder technique simulation: SMD - Temperature (°C): 260 ± 5 (solder temp) - Time (s): 10 ± 1 - Temperature ramp / immersion and emersion rate: 25 mm/s ± 6 mm/s - Number of heat cycles: 1
Resistance to High Temperature	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	500 hrs. at 125°C±5°C Unpowered. Measurement at 24±4 hours after test conclusion.
Resistance to Low Temperature	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	500 hrs. at -40°C±5°C. Unpowered. Measurement at 24±4 hours after test conclusion.
Resistance to Humidity	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	After 500 hours in 40±2 $^\circ\mathbb{C}$ and 90 to 95% humidity , all hour drying under normal condition.
		After 100 cycles of following condition.
		Step Temperature (°C) Times (min.)
Thermal shock	Inductance within ±20% of initial value. No disconnection or short circuit.	1 -40±5°C 30
	The appearance shall not break.	2 Room Temperature Within 3 3 125±5℃ 30
		4 Room Temperature Within 3
Vibration Test	Inductance within ±10% of initial value and appearance shall not break.	After vibration for 1hour, In each of three orientations at sweep vibration (10~55~10Hz) with 1.52mm P-P Amplitudes.
Terminal strength	The terminal electrode and the ferrite must not be damaged	Solder a chip to test substrate, and then laterally apply load 10N in the arrow direction, Duration :5s
Drop Test	Inductance within ±20% of initial value. The appearance shall not break.	Drop 3 times on a concrete floor from a height of 75cm by inimum packing

