

CUSTOMER: STD	
PRODUCTS: SHIELDED SMD Power Inductor	•
PART NO: MCSI2E Series	
CUST P/ NO:	
DATE: 2021.11.30	
SALES DEP:	
E-MAIL:	

REV.C VERSION: CHANGE PROJECT: BEFORE: AFTER: **CHANGE DATE: CUSTOMER SIGNATURE:**

APPROVAL BY :	CHECK BY:	DRAWN BY:
Honey Wei	Leo Wang	May Gao

Ver	Revision Items	Before Revision	After Revision	Date
Rev.C	-	-	-	2021.11.30
100.0				2021111.00
+				
+				
				+

- SHIELDED SMD POWER INDUCTOR
- · High Current up to 165 A
- · Low DCR down to 0.15mOhms
- · Environmental Lead free
- Environmental RoHS2.0 compliant
- · Environmental halogen free
- Storage Temperature : -40 $\mathcal C$ ~ +85 $\mathcal C$
- · Packaging 13"Reel ,Plastic tape:24.0mm wide

FEATURES

- · Ferrite based with lower core loss
- · Frerrite High Bs material.
- · Accurate&low DCR design
- · Ultra high current capacity.
- · Use 1.5 turn loop design for higher Inductance.

Applications

- · Multi-phase and Vcore regulators.
- · Server and desktop VRMs and EVRDs.
- · Data networking and storage systems.
- · Graphics cards and battery power systems.
- · Buck Converter, VRMs.

PRODUCT IDENTIFICATION

<u>MC</u>	<u>SI2E</u>	<u>09609</u>	<u>Z</u>	<u>R10</u>	<u>L</u>	<u>R17</u>
1	2	3	4	(5)	6	7

- ① Brand & Product classification
- ② Product Series NO.(SI2E: SMD Power Inductors.)
- ③ External Dimensions.(09609: L:9.0 x W:6.0 x H:9.0) [mm]
- (4) Separator code.
- (5) Nominal Inductance

Example	Nominal Value
R22	0.22uH
1R0	1.0uH
100	10uH
101	100uH
70NH	70nH

- (6) Inductance Tolerance.(L: ±15%; M: ±20%; N: ±30%)
- ⑦ Nominal DC Resistance.(R17: 0.17mΩ)

(Unit: mm)

Code	Dimensions
Α	9.6 Max
В	6.4 Max
С	9.15 Max
D	2.6±0.2
E	2.5±0.3
F	4.0±0.5

Recommend Land Pattern Dimensions

(Unit: mm)

Code	Dimensions
а	2.9 Ref
b	2.8 Ref
С	3.7 Ref

Electrical Characteristics

Part Number	Inductance ¹	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms⁴	
Fait Number	(nH)	(mΩ)	(Amps)Max	(Amps)Max	(Amps)Typs	
MCSI2E09609ZR10LR17	100±15%	0.17±10%	100.0	90.0	66.0	
MCSI2E09609ZR12LR17	120±15%	0.17±10%	94.0	75.0	66.0	
MCSI2E09609ZR15LR17	150±15%	0.17±10%	75.0	60.0	66.0	
MCSI2E09609ZR30LR17	300±15%	0.17±10%	33.0	29.0	66.0	

- 2. The nominal DCR is measured at 20° € ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25° C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 125°C
- 4.The I-rms that will cause temperature rise approximate 40°C without core loss.

(Unit: mm)

Code	Dimensions
Α	9.6 Max
В	6.6 Max
С	10.0 Max
D	3.2±0.2
E	2.7±0.3
F	3.4±0.5

Recommend Land Pattern Dimensions

(Unit: mm)

Code	Dimensions
а	3.5 Ref
b	3.0 Ref
С	3.0 Ref

Flectrical Characteristics

Electrical Characteristics						
Part Number	Inductance ¹	DCR ²	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms ⁴
r art rtarrisor	(nH)	(mΩ)	(mΩ)	(Amps)Max	(Amps)Max	(Amps)Typs
MCSI2E09610Z70NHLR12	70±15%	0.10 Typ	0.12 Max	145.0	126.0	84.0
MCSI2E09610ZR10LR12	100±15%	0.10 Typ	0.12 Max	108.0	90.0	84.0
MCSI2E09610ZR12LR12	120±15%	0.10 Typ	0.12 Max	85.0	72.0	84.0
MCSI2E09610ZR15LR12	150±15%	0.10 Typ	0.12 Max	67.0	58.0	84.0
MCSI2E09610ZR18LR12	180±15%	0.10 Typ	0.12 Max	56.0	49.0	84.0
MCSI2E09610ZR22LR12	220±15%	0.10 Typ	0.12 Max	46.0	40.0	84.0
MCSI2E09610ZR28LR12	280±15%	0.10 Typ	0.12 Max	36.0	31.0	84.0

- 2. The nominal DCR is measured at 20° € ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25° C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 125° C
- 4.The I-rms that will cause temperature rise approximate 40°C without core loss.

(Unit: mm)

Code	Dimensions
Α	9.6 Max
В	6.6 Max
С	12.2 Max
D	2.6±0.3
E	2.6±0.3
F	3.8±0.5

Recommend Land Pattern Dimensions

(Unit: mm)

Code	Dimensions
а	2.9 Ref
b	2.9 Ref
С	3.5 Ref

Electrical Characteristics

Part Number	Inductance ¹ (nH)	DCR ² (mΩ)	I-sat ^{3.1} (Amps)Max	I-sat ^{3.2} (Amps)Max	I-rms⁴ (Amps)Typs	
MCSI2E09612ZR30LR175	300±15%	0.175±10%	44.0	37.0	65.0	
MCSI2E09612ZR47LR175	470±15%	0.175±10%	27.0	23.0	65.0	

- 2. The nominal DCR is measured at 20° € ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25° C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 100°C
- 4.The I-rms that will cause temperature rise approximate 40°C without core loss.

Code	Dimensions
Α	10.0 Max
В	6.0 Max
С	12.0 Max
D	2.45±0.3
Е	2.95±0.3
F	3.5±0.5

Recommend Land Pattern Dimensions

(Unit: mm)

Code	Dimensions
а	3.8 Ref
b	3.25 Ref
С	3.2 Ref
·	

Electrical Characteristics

Dort Number	Inductance ¹	DCR ²	I-sat ³	I-rms⁴	
Part Number	(nH)	(mΩ)	(Amps)Max	(Amps)Typs	
MCSI2E10612ZR10LR125	100±15%	0.125±10%	125,≧70nH	70.0	
MCSI2E10612ZR12LR125	120±15%	0.125±10%	105,≧84nH	70.0	

- 2. The nominal DCR is measured at 20°C ambient temperature.
- 3. The I-sat that will cause rolloff nominal inductance value at 25° C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.

(Unit: mm)

Code	Dimensions
Α	10.7 Max
В	7.5 Max
С	9.5 Max
D	2.8±0.3
Е	2.8±0.3
F	4.6±0.5

Recommend Land Pattern Dimensions

(Unit: mm)

Code	Dimensions
а	3.1 Ref
b	3.1 Ref
С	4.3 Ref

Flectrical Characteristics

	Inductance ¹	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-sat ^{3.3}	I-rms⁴
Part Number						
	(nH)	(mΩ)	(Amps)Max	(Amps)Max	(Amps)Max	(Amps)Typs
MCSI2E10795ZR30LR23	300±15%	0.23±10%	50.0	41.0	37.0	61.0

- 1.Inductance is measured at 100 KHz and 1.0 Vrms at 25°C
- 2.The nominal DCR is measured at 20°C ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25° C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 100°C
- 3.3The I-sat that will cause initial inductance value approximately 20% rolloff at 125°C
- 4. The I-rms that will cause temperature rise approximate 40°C without core loss.

Code	Dimensions
Α	10.0 Max
В	7.0 Max
С	10.0 Max
D	2.2±0.3
E	2.3±0.3
F	4.1±0.5

Recommend Land Pattern Dimensions

(Unit: mm)

Code	Dimensions
а	2.5 Ref
b	2.6 Ref
С	3.8 Ref

Electrical Characteristics

Electrical Characteri		2	1 2	1 4	1
Part Number	Inductance ¹	DCR ²	I-sat ³	I-rms ⁴	
	(nH)	(mΩ)	(Amps)Max	(Amps)Typs	
MCSI2E10710Z70NHLR17	70±15%	0.17±10%	165.0	68.0	
MCSI2E10710ZR12LR17	120±15%	0.17±10%	107.0	68.0	
MCSI2E10710ZR15LR17	150±15%	0.17±10%	92.0	68.0	
MCSI2E10710ZR20LR17	200±15%	0.17±10%	68.0	68.0	
MCSI2E10710ZR22LR17	220±15%	0.17±10%	62.0	68.0	
MCSI2E10710ZR33LR17	330±15%	0.17±10%	37.0	68.0	

- 2. The nominal DCR is measured at 20° € ambient temperature.
- 3. The I-sat that will cause initial inductance value approximately 20% rolloff at 25° C
- 4.The I-rms that will cause temperature rise approximate 40°C without core loss.

(Unit: mm)

Code	Dimensions
Α	10.7 Max
В	7.5 Max
С	12.2 Max
D	3.1±0.3
Е	2.8±0.3
F	4.4±0.5

Recommend Land Pattern Dimensions

(Unit: mm)

Code	Dimensions
а	3.4 Ref
b	3.1 Ref
С	4.1 Ref

Electrical Characteristics

Part Number	Inductance ¹	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms⁴	
i ait itambei	(nH)	(mΩ)	(Amps)Max	(Amps)Max	(Amps)Typs	
MCSI2E10712ZR27LR15	270±15%	0.15±10%	60.0	51.0	75.0	

- 2. The nominal DCR is measured at 20° € ambient temperature.
- 3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25° C
- 3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 100°C
- 4.The I-rms that will cause temperature rise approximate 40°C without core loss.

Packaging

Reel Dimension:

P/N	Type	A(mm)	B(mm)	G(mm)	T(mm)	Chip/Reel
MCSI2E09609(R17)	13" x 24mm	330	100	24.5	28.7	500
MCSI2E09610(R12)	13" x 24mm	330	100	24.5	28.7	400
MCSI2E09612(R175)	13" x 24mm	330	100	24.5	28.7	250
MCSI2E10612(R125)	13" x 24mm	330	100	24.5	28.7	400
MCSI2E10795(R23)	13" x 24mm	330	100	24.5	28.7	350
MCSI2E10710(R17)	13" x 24mm	330	100	24.5	28.7	500
MCSI2E10712(R15)	13" x 24mm	330	100	24.5	28.7	300

Packaging

Tape Dimension:

P/N	Ao	Во	Ko	Р	W			
MCSI2E09609(R17)	6.8±0.1	9.8±0.1	9.8±0.1	12.0±0.1	24.0±0.3			
MCSI2E09610(R12)	6.6±0.1	10.0±0.1	10.3±0.1	12.0±0.1	24.0±0.3			
MCSI2E09612(R175)	6.7±0.1	10.1±0.1	12.4±0.1	16.0±0.1	24.0±0.3			
MCSI2E10612(R125)	6.4±0.1	10.4±0.1	12.5±0.1	12.0±0.1	24.0±0.3			
MCSI2E10795(R23)	7.7±0.1	11.1±0.1	10.2±0.1	16.0±0.1	24.0±0.3			
MCSI2E10710(R17)	7.0±0.1	10.0±0.1	10.0±0.1	12.0±0.1	24.0±0.3			
MCSI2E10712(R15)	7.7±0.1	11.1±0.1	12.4±0.1	16.0±0.1	24.0±0.3			

Packaging

Tearing Off Force:

	The force tearing off cobe tape is 10 to 130 g.f						
	in the arrow direction under the following conditions						
	Room Temp	Room Humidity	Room atrn	Teaming Speed			
	(℃)	(%)	(hPa)	(mm/min)			
е	5~35	45~85	860~1060	300			

Storage Conditions

- 1. Temperature and humidity conditions: -40°C ~ +85°C and 70% RH.
- 2. Recommended products should be used within 6 months form the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

*Transportation

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.

Recommended Soldering Conditions

Figure 1. Re-flow Soldering

Figure 2. Hand Soldering

Item	Specification	Conditions			
Operating temperature range	-40°C ~ +125°C (Including self-temperate	ure rise)			
Storage temperature and humidity range	-40°C ∼ +85°C , 70% RH Max				
Solderability	More than 90% of the terminal electrode should be covered with solder.	- Preheat: 150 °C, 60 sec - Solder: Sn96.5%-Ag3%-Cu0.5% e - Temperature: 245±5°C - Flux for lead free: Rosin 9.5% - Dip time: 4±1 sec - Depth: completely cover the termination			
Resistance to Soldering Heat	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	- Solder technique simulation: SMD - Temperature (°C): 260 ± 5 (solder temp) - Time (s): 10 ± 1 - Temperature ramp / immersion and emersion rate: 25 mm/s ± 6 mm/s - Number of heat cycles: 1			
Resistance to High Temperature	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	500 hrs. at 125°C±5°C Unpowered. Measurement at 24±4 hours after test conclusion.			
Resistance to Low Temperature	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	500 hrs. at -40°C±5°C. Unpowered. Measurement at 24±4 hours after test conclusion.			
Resistance to Humidity	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	After 500 hours in $40\pm2^{\circ}\mathbb{C}$ and 90 to 95% humidity , ar hour drying under normal condition.			
Thermal shock	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	After 100 cycles of following condition. Step Temperature (°C) Times (min.) 1			
Vibration Test	Inductance within ±10% of initial value and appearance shall not break.	After vibration for 1hour, In each of three orientations at sweep vibration (10~55~10Hz) with 1.52mm P-P Amplitudes.			
Terminal strength	The terminal electrode and the ferrite must not be damaged	Solder a chip to test substrate, and then laterally apply load 10N in the arrow direction, Duration :5s			
Drop Test	Inductance within ±20% of initial value. The appearance shall not break.	Drop 3 times on a concrete floor from a height of 75cm by inimum packing			

